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Decaearbonyltriosmium Complexes of Some Conjugated 
Dienes. The Crystal Structures of 
Os3(CO)io(s-c/s-C4H6) and Os3(CO)Io(S-^aHS-C4H6)

1 

Sir: 

Examination of the coordination and mobility of ligands in 
metal cluster compounds provides detailed data that may be 
applicable to the less accessible problem of characterizing 
species chemisorbed on metal surfaces.2 Metal cluster com­
plexes of conjugated dienes are rare and have not been well-
characterized structurally.3 We wish to report the preparation 
of a set of decaearbonyltriosmium complexes of conjugated 
dienes, some N M R evidence concerning the preferred modes 
of coordination, and the crystal structures of isomeric com­
plexes of the s-cis and s-trans forms of 1,3-butadiene. 

The unsaturated metal cluster compound H20s3(CO)io was 
found to react readily with excess diene at room temperature 
in cyclohexane solution. Chromatographic separation provided 
the major cluster product, of formula Os3(CO)10(diene)(diene 
= 1,3-butadiene ( la) , 2-methyl- 1,3-butadiene (2), 2,3-di-
methyl-1,3-butadiene (3), trans,trans-2,4-hexadier\Q (4), and 
1,3-cyclohexadiene (5)), as a stable yellow solid in each case.4 

With 1,3-butadiene an additional compound (lb) of the same 
formula was isolated in low yield (vide infra). The mass spec­
trum of each compound includes a molecular ion and ions due 
to loss of up to ten carbonyl ligands.5 

The ambient temperature 1H NMR spectrum obtained for 
la consists of three, well-separated multiplets (r 4.74, 7.68, 
9.51 in CDCU) assigned in order of increasing field to the s-
vicinal protons (Hc, HC') and to the geminal protons respec­
tively cis (Hb , H b ) and trans (Ha , H3-) to H c or HC'. The cou­
pling constants determined by iterative simulation (/ab = 2.89, 
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Figure 1. Molecular geometry of Os3(CO)io(s-m-C4H6) (la). 

Figure 2. A view of the Os3(CO) lois-trans-C^He) (lb) molecule. Carbon 
atoms C(12) and C(13) are represented by isotropic thermal ellipsoids. 

/ a c = 8.58, / a c ' = -0 .79 , /be = 7.17,/be' = 1-02, /cc< = 4.66 
Hz) compare closely with those of the tricarbonyliron complex 
of s-ds-butadiene.6At low temperatures (—90°) each of the 
three multiplets splits into new signals (r 3.90, 4.78, 5.17 (1: 
2:1); 7.32, 7.47, 7.90 (1:1:2); 9.16, 9.65 (2:2)), signifying the 
presence of two interconverting, almost equally populated 
conformers. One species is symmetrical, with respect to the two 
halves of the diene; the other is unsymmetrical. Ambient 
spectra for complexes 2 ,3 , and 5 are each also consistent with 
symmetrical coordination of the diene in the s-cis form.7 At 
—95° the spectrum of 5 is split, indicating that an unsymme­
trical species is present; a symmetrical conformer is not ob­
servable. In contrast, the spectra of 2 and 3 are unchanged to 
—80 and —124°, respectively, suggesting that these compounds 
adopt only (or predominantly) a symmetrical structure.8 

The solid-state structure of complex la has been determined 
by x-ray diffraction. The complex crystallizes in space group 
P2\/n with a cell of refined dimensions a = 8.051 (2) A, b ̂ = 
14.778 (3) A, c = 15.356 (2) A, and /? = 94.60°. Data were 
collected on a Syntex Py diffractometer using Mo Ka radiation 
and corrected for absorption effects. The structure was solved 
by conventional Patterson and Fourier methods. Least-squares 
refinement of 2418 independent, observed reflections gave a 
conventional R factor of 0.036. A view of the molecular ge­
ometry is shown in Figure 1. The structure is derived from that 
of Os3(CO)i29 with substitution of an axial and an equatorial 
carbonyl at Os(3) by the ^-cw-butadiene ligand. Carbon atoms 
C(11) and C(12) are nearly in the Os3 plane, but C(13) and 
C(14) are pulled away substantially from the axial site due to 
the small bite angle of the diene. The osmium-axial olefin bond 
(Os(3)-C(13) = 2.24 (2), Os(3)-C(14) = 2.30 (1) A) appears 
weaker than the osmium-equatorial olefin bond (Os(3)-C(l 1) 
= 2.24 (2), Os(3)-C(12) = 2.20 (1) A). The Os(2)-Os(3) 
bond, trans to the equatorial olefin, is slightly longer (2.884 
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(3) A) than the other Os-Os distances in the structure (2.861 
(3) and 2.863 (3) A), and the osmium-carbon distance to the 
carbonyl carbon approximately trans to C(14) is the shortest 
in the structure (1.88 (2) A). 

The unsymmetrical conformer observed in the NMR 
spectrum of la may be identified with the solid-state config­
uration (Figure 1) and an analogous structure is assumed for 
5. A similar structure may be proposed for the symmetrical 
form of la (and of 2 and 3), except with the diene coordinated 
to the two equatorial positions at one osmium atom. Approx­
imate line shape calculations for la indicate that exchange of 
the axial and equatorial olefin sites in the unsymmetrical 
conformer can proceed independently of equilibration via the 
symmetrical (diequatorial) form. Further mechanistic details 
await the results of 13C NMR studies.10 

Complexes lb and 4 are readily distinguished from la, 2, 
3, and 5 by their infrared spectra11 and analysis of their 1H 
NMR spectra indicates coordination of the diene in its s-trans 
form. As for la, three two-proton multiplets (T 6.60, 7.74, 8.57 
in CDCI3) are seen for lb, but the s-vicinal protons (H0, Hc>) 
resonate at highest field and the protons (H3, Ha') trans to the 
vicinal protons at lowest field. The coupling constants extracted 
from the iteratively simulated spectrum (Jab = 2.47, Jac = 
7.38, /ac< = -0.65, /be = 11.13, /be' = -0.48, J^ = 11.37 Hz) 
are generally comparable with those for uncomplexed s-
rra«s-l,3-butadiene.12 Particularly noteworthy is that the 
s-vicinal coupling constant (/Cc') is significantly larger for lb, 
4,13 and free butadiene (11.4, 10.6, and 10.4 Hz, respectively) 
than for la, 5, and Fe(CO)3(5-m-C4H6)6a (4.7, 3.7, and 4.8 
Hz, respectively) and free cyclic s-cis dienes.6a'14 Coordination 
of both ends of an s-trans diene necessarily requires two metal 
centers and the alternative possibilities of diaxial or diequa­
torial coordination at adjacent osmium atoms can be envi­
sioned. No splitting is seen in the NMR spectrum of lb to 
—76° and of the more soluble 4 to — 127°, which supports the 
symmetrical, equatorially bridged structure. This assignment 
has been substantiated by a single-crystal x-ray diffraction 
study of lb. 

Crystals of Os,i{CO)\o{s-trans-CnW(,) obtained from 
chloroform solution form in space group C2/c with a cell of 
dimensions a = 30.638 (6) A, b = 9.770 (2) A,c = 13.285(3) 
A, and /3 = 112.82 (2)°. Data collection and structure deter­
mination were performed as before. Refinement of 2473 in­
dependent, observed reflections resulted in an R factor of 
0.036. A view of the molecule is presented in Figure 2. Isotropic 
thermal ellipsoids are shown for carbon atoms C(12) and 
C(13), which were observed to suffer from severe vibrational 
disorder. The 5-rra«s-butadiene ligand bridges osmium atoms 
Os(2) and Os(3) with the olefin groups bound in equatorial 
positions. The Os(2)-Os(3) bond (2.932 (3) A) is substantially 
longer than the other osmium-osmium bonds of the structure 
(2.856 (3) and 2.857 (3) A).15 

These results with complexes 1-5 demonstrate that conju­
gated dienes can coordinate to a triangular metal framework 
in several ways. An important factor determining the mode 
adopted must be interaction between diene substituents and 
adjacent carbonyl ligands, since the complexes of 1,3-butadi-
ene, the unencumbered parent ligand, display the greatest 
structural variety. For further information on this point the 
preparation of complexes with a wider range of diene substit­
uents is being pursued. 
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A Novel Catalytic Property of Magnesium Oxide for 
Hydrogenation of 1,3-Butadiene 

Sir: 

We wish to report a novel catalytic property of MgO which 
was obtained by evacuating Mg(OH)2 at an unusually high 
temperature, 1100 0C. Although the catalyst did not show any 
activity for H2-D2 equilibration, it was active and highly se­
lective for the hydrogenation of 1,3-butadiene to m-2-butene, 

Table I. Isotopic Distribution of Products in the 
Deuteriogenation of 1,3-Butadiene over MgO at 0 0C 

Product 

1,3-Butadiene 
1-Butene 
/ra«.s-2-Butene 
cw-2-Butene 

% each 
product 

59.0 
2.9 
6.4 

31.7 

%of 
d0 

100.0 
0.7 
2.5 
0.4 

each is< 
d, 

0 
2.1 
1.4 
1.2 

atopic species 
di di-dji 

0 0 
97.2 0 
96.1 0 
98.4 0 
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